Mathbab23-03-31Review:Let X1, X2, ..., be i.i.d. r.u's and set
$$S_n = X_1 + ... + X_n$$
, $n = 1, 2, ...The process (Sn) is called a random walk.Thm 4.8:For a random walk on IR, there are only4 possible Cares, one of which has probability 1.(i) $S_n = o$ for all n.(ii) $S_n \rightarrow +\infty$.(iii) $S_n \rightarrow -\infty$ (iv) $-\infty = liminf Sn < lim Sup Sn = \infty$..Below we will further study the asymptotical be havior of Sn under the assumption that $E|X| < \infty$.$

By the strong law of large numbers, if
$$\mu := EX \neq 0$$
, then

$$\lim_{n \to \infty} \frac{1}{n} S_n = \mu \quad a.s.$$
Hence

$$\lim_{n \to \infty} S_n = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{p} \mu > 0$$

$$\int_{-\infty}^{-\infty} \int_{-\infty}^{\infty} \frac{1}{p} \mu < 0.$$
It remains to consider the case when $\mu = EX = 0.$
Thm 4.9. (K.L. Chung & Fuchs)
Suppose that $EX = 0.$ Then there are only
2 possible cases, one of which has probability 1.
(i) $S_n = 0$ for all $n.$
(ii) $-\infty = \lim_{n \to \infty} \inf_{-\infty} S_n < \lim_{n \to \infty} S_n = \infty.$

To prove the above result, let us have some preparation.

Recall that we can rebuild our prob space as

$$(\mathcal{L}, \mathcal{F}, \mathcal{P}) = \prod_{n=1}^{\infty} (\mathbb{R}, \mathcal{P}(\mathcal{R}), \mu),$$

where μ is the prob. law of X1.

• Then we can define
$$X_n: \Omega \to IR$$
 as
 $X_n(\omega) = \omega_n$ for $\omega = (\omega_1, \omega_2, \dots) \in \Omega$.
• Now we define $d: \Omega \to \Omega$ by
 $d\omega = (\omega_2, \omega_3, \omega_6, \dots)$ for $\omega = (\omega_1, \omega_2, \dots)$.
We call d the left shift map on Ω .
Lem 4.10. We have $P = P \circ \sigma^{-1}$. That is, for every $A \in \mathcal{F}$,
 $P(A) = P(\sigma^{-1}A)$.
Pf. Set
 $\mathcal{J} = \{A \in \mathcal{F} : P(A) = P(\sigma^{-1}A)\}$.
Then one can check that \mathcal{J} is a λ -system, i.e. the following
a properties hold:
 $\mathfrak{O} \quad \Omega \in \mathcal{F}$.
 $\mathfrak{O} \quad If A, B \in \mathcal{J}$ with $A \subset B$, then $B \setminus A \in \mathcal{J}$.
Next let P be the collection of rectangles in Ω ; recall

a set
$$C \in \mathcal{F}$$
 is called a rectangle if
 $C = \{\omega : \omega_i \in G_i, \omega_k \in G_k, \cdots, \omega_k \in C_k\}$
for some $\Re \in iN$ and $G_i, \cdots, G_k \in \mathcal{G}(\mathbb{R})$.
By definition, \mathcal{F} is the sigma-algebra generated by \mathcal{P} .
Clearly \mathcal{P} is a π -system, that is, \mathcal{P} is closed under intersection.
Next we show that $\mathcal{P} \subset \mathcal{F}$.
Let $C = C_1 \times \cdots \times C_k \times \mathbb{R}^N \subset \Omega$, with $C_i \in \mathcal{G}(\mathbb{R})$.
Then $\sigma^{+}C = -\mathbb{R} \times C_i \times \cdots \times C_k \times \mathbb{R}^N$.
Clearly
 $\mathcal{P}(C) = \mathcal{H}(C_1) \times \cdots \times \mathcal{H}(C_k) = \mathcal{P}(\sigma^+C)$.
So we have that $C \in \mathcal{F}$. Hence $\mathcal{P} \in \mathcal{F}$.
By Dynkin's π - λ Theorem, $\mathcal{F} = \mathcal{O}(\mathcal{P}) \subset \mathcal{F}$.
Since $\mathcal{T} \subset \mathcal{F}$, it follows that $\mathcal{T} = \mathcal{F}$, i.e., $\mathcal{P} = \mathcal{P} \circ \sigma^+$.

Let (an) be a sequence of real number such that

$$\lim_{n \to \infty} a_n = \infty.$$
Then there exist $\Sigma > 0$ and $p \in \mathbb{N}$ such that
 $a_{n+p} - a_p > \Sigma$ for all $n \ge 1$.
Pf. Define
 $p = \sup \{ k \ge 1 : a_k \le a_k \}.$
Then $p < \infty$ since $a_n \to \infty$ as $h \to \infty$.
Moreover $a_p \le a_k$, and $a_{n+p} > a_k$ for all $n \ge 1$.
 $a_{n+p} > a_p + 1$ for all $n \ge n_0$.
Take $S = \min \{ a_{k+p} - a_p : k \ge 1, 2, ..., n_0 \} > 0$.
Clearly,
 $a_{n+p} - a_p \ge \min \{s, 1\}$ for all $n \ge 1$.

Below we prove Thm 4.9 by following the argument of Dekking (1982).

$$Pf \circ f Thm 4.9: By Thm 4.8, we only need to show that
$$P(Iim S_n = +\infty) = o \qquad (1)$$
$$P(Iim S_n = -\infty) = o.$$$$

WLOG, we only prove (1).

For 2 >0 and tER, write

$$I_{\xi}(t) = [t-\xi, t+\xi]$$

For nEN and WED, define

$$R_{n}^{\varepsilon}(\omega) = \lambda \left(\begin{array}{c} n \\ U \\ i=1 \end{array} \mathsf{I}_{\varepsilon}(\mathsf{S}_{i}(\omega)) \right).$$

$$\lim_{n \to \infty} \frac{S_n(w)}{n} = 0 \quad \text{for a.s } w \in \Omega.$$

Hence for almost all
$$\omega$$
 and any $\delta > 0$, $\exists n_0 = n_0(\omega, \delta)$ such that
 $|S_R(\omega)| \leq \Re S$ for all $\Re \geq n_0$.
Therefore $I_{\xi}(S_R(\omega)) \subset [-n_{\delta} - \epsilon, n_{\delta} + \epsilon]$ for $n_0 < \Re < n$.
It follows that
 $R_n^{\xi}(\omega) \leq \Re_{n_0}^{\xi}(\omega) + (2n_{\delta} + 2\epsilon)$ for all η .
Hence
 $\lim_{n \to \infty} \frac{R_n^{\xi}(\omega)}{n} \leq \delta$.
Thurefore $\lim_{n \to \infty} \frac{R_n^{\xi}(\omega)}{n} = 0$ a.s.
Notice that $\frac{R_n^{\xi}(\omega)}{n} \leq 2\epsilon$ for all $n \geq 0$, by the DCT,
 $\lim_{n \to \infty} \frac{1}{n} E(\Re_n^{\delta}) = 0$.
Observe that
 $S_n(\sigma \omega) = S_{n+1}(\omega) - S_1(\omega)_{\theta}$
So
 $\Re_{n+1}^{\xi} - \Re_n^{\xi} \circ \sigma = \Delta((\bigcup_{i=1}^{n} I_{\xi}(S_i)) - \Delta((\bigcup_{i=2}^{n} I_{\xi}(S_i))).$

It follows that

$$R_{n+1}^{\xi} - R_{n}^{\xi} \circ d \ge 2\xi \quad \prod_{i \in I} |S_{i+1} - S_{i}| \ge 2\xi \quad \text{for all } |\xi \cdot i \le n \}$$
Hence

$$E(R_{n+1}^{\xi}) - E(R_{n}^{\xi} \circ d) \ge 2\xi \quad P(|S_{i+1} - S_{i}| > 2\xi \quad \text{for all } |\xi \cdot i \le n)$$

$$\ge 2\xi \quad P(|S_{i}| > 2\xi \quad \text{for all } |z \ge i)$$

$$= 2\xi \quad P(|S_{i}| > 2\xi \quad \text{for all } |z \ge i)$$

$$(S_{inal} \text{ the process } \int S_{in} - S_{i} \cdot |z \ge i]$$

$$and \quad \int S_{i} \cdot |z \ge i]$$

$$have the same division for.$$
As $P = P \circ s^{-1}$, $E(R_{n}^{\xi} \cdot \sigma) = E(R_{n}^{\xi})$. It follows that

$$\lim_{h \to \infty} \frac{E(R_{n}^{\xi})}{n} \ge 2\xi \quad P(|S_{i}| > 2\xi \quad \text{for all } |z \ge i)$$
Since $\lim_{h \to \infty} \frac{E(R_{n}^{\xi})}{n} = 0$, so

$$P(|S_{i}| > \xi \quad \text{for all } |z \ge i] = 0$$
Again, Since $\{S_{i+P} - S_{P} : |z \ge i\}$ has the same divistribution
 $a \le \{S_{i} : |z \ge i\}$,
it follows that for all $\xi > 0$ and $P \in \mathbb{N}$,

$$P(|S_{i+P} - S_{P}| > \xi \quad \text{for all } i \ge i) = 0.$$

Hence

$$F := \bigcup \bigcup \left\{ w : |S_{i+P}^{(w)} - S_{P}^{(w)}| > \varepsilon \text{ for all } i \ge i \right\}$$
has prob. 0.
However by Lem 4.9.

$$\left\{ w : \lim_{n \to \infty} S_{n}(w) = +\infty \right\} \subset F.$$
Hence

$$P\left(\lim_{n \to \infty} S_{n} = +\infty \right) = 0.$$
If
In what follows, we extend the result of Chung and Fuchs
to general ergodic stationary processes.
Def. Let (Ω, \mathcal{F}, P) be a prob. space and $T: \Omega \rightarrow \Omega$ a
measurable mapping such that

$$P(A) = P(T^{-}A) \text{ for every } A \in \mathcal{F}.$$
Say that T is ergodic with respect to P if
for each $A \in \mathcal{F}$ with $A = T^{-}A$, one has either $P(A) = 0$

or
$$P(A)=1$$
.
The followig ergodic Thm generalizes the SLLN:
Thm 4.12. (Birkhoff ergodic Thm).
Let T: $\Omega \rightarrow \Omega$ be an ergodic measure preserving
transformation on a probability space (Ω, \mathcal{F}, P) .
Let $f \in L^{4}(\Omega, \mathcal{F}, P)$. Then
 $\lim_{n \to \infty} \frac{h^{-1}}{n} \frac{f(T^{k}\omega)}{\mathcal{F}_{k=0}} = \int f dP$ a.s.
Moreover, the following result generalizes Chung-Fuchs' theorem:
Thm 4.13 (Dekking, 1982)
Under the same assumptions of Thm 4.13, Suppose that
 $P\left\{\omega:\lim_{n \to \infty} \frac{h^{-1}}{R^{-1}} f(T^{k}\omega) = +\infty\right\} > 0$.